TypeScript --- 进阶篇

2023/10/04 posted in  TypeScript
Tags:  #typescript

类型别名

简单来讲,类型别名就是给一个类型起一个新名字。

简单的例子:

type Name = string
type NameResolver = () => string
type NameOrResolver = Name | NameResolver
function getName(n: NameOrResolver): Name {
	if (typeof n === 'string') {
        return n;
    } else {
        return n();
    }
}

上例中,我们使用 type 创建类型别名。

类型别名常用于联合类型。

类型别名与接口的区别

类型别名与接口非常相似,他们两者可以相互选择

interface Person {                
	name: string;
	age: number
}
type Person = {
	name: string;
	age: number
}
同名接口定义的类型可以合并,而类型声明不行
interface Person {
	name: string;
}
interface Person {
	age: number
}
const person: Person = {
	name: 'xiaohong',
	age: 18
}
Type interface
只能通过&进行合并 同名自动合并,通过extends扩展
更强大,除了以上类型还支持 string 数组... 自身只能表达 object/class/function类型

建议:能用 interface 实现,就用 interface , 如果不能才用 type

字面量类型

字符串字面量类型用来约束取值只能是某几个字符串的一个。

例子:

tyep EventNames = 'click' | 'scroll' | 'mouseove'
function handleEvent(ele: Element, event: EventNames) {
	// todo
}
andleEvent(document.getElementById('hello'), 'scroll');  // 没问题
handleEvent(document.getElementById('world'), 'dblclick'); // 报错,event 不能为 'dblclick'

上例中,我们使用 type 定了一个字符串字面量类型 EventNames,它只能取三种字符串中的一种。

除了字符串字面量类型之外,TypeScript 同样也提供 booleannumber 的字面量类型:

type OneToFive = 1 | 2 | 3 | 4 | 5;
type Bools = true | false;

注意,类型别名与字符串字面量类型都是使用 type 进行定义。

元组

数组合并了相同类型的对象,而元组(Tuple)合并了不同类型的对象。

元组类型允许表示一个已知元素数量和类型的数组,各元素的类型不必相同。

元组起源于函数编程语言(如 F#),这些语言中会频繁使用元组。

简单的例子:

定义一对值分别为stringnumber的元组

let tom: [string, number] = ['Tom', 25]

当赋值或访问一个已知索引的元素时,会得到正确的类型:

let tom:[string, number]
tom[0] = 'Tom'
tom[1] = 25

tom[0].slice(1)
tom[1].fixed(2)

也可以赋值其中一项:

let tom = [string, number]
tom[0] = 'tom'

但是当直接对元组类型的变量进行初始化或者赋值的时候,需要提供所有元素类型中指定的项。

let tom: [string, number]
tom = ['Tom', 25]
let tom: [string, number]
tom = ['25']
// Property '1' is missing in type '[string]' but required in type '[string, number]'

越界的元素

当添加越界的元素时,它的类型会被限制为元组中每个类型的联合类型:

let tom: [string, number];
tom = ['Tom', 25];
tom.push('male');
tom.push(true);

// Argument of type 'true' is not assignable to parameter of type 'string | number'.

枚举

枚举(Enum)类型用于取值被限定在一定范围内的场景,比如一周只能有七天,颜色限定为红绿蓝等。

简单的例子

枚举使用 enum 关键字来定义:

enum Days {Sun, Mon, Tue, Wed, Thu, Fri, Sat}

枚举成员会被赋值为从 0 开始递增的数字,同时也会对枚举值到枚举名进行反向映射:

enum Days {Sun, Mon, Tue, Wed, Thu, Fri, Sat};

console.log(Days["Sun"] === 0); // true
console.log(Days["Mon"] === 1); // true
console.log(Days["Tue"] === 2); // true
console.log(Days["Sat"] === 6); // true

console.log(Days[0] === "Sun"); // true
console.log(Days[1] === "Mon"); // true
console.log(Days[2] === "Tue"); // true
console.log(Days[6] === "Sat"); // true

手动赋值

我们也可以给枚举项手动赋值:

enum Days {Sun = 3, Mon = 1, Tue, Wed, Thu, Fri, Sat}
console.log(Days["Sun"] === 3); // true
console.log(Days["Wed"] === 3); // true
console.log(Days[3] === "Sun"); // false
console.log(Days[3] === "Wed"); // true

上面的例子中,未手动赋值的枚举项会接着上一个枚举项递增。

如果未手动赋值的枚举项与手动赋值的重复了,TypeScript 是不会察觉到这一点的:

enum Days {Sun = 3, Mon = 1, Tue, Wed, Thu, Fri, Sat};

console.log(Days["Sun"] === 3); // true
console.log(Days["Wed"] === 3); // true
console.log(Days[3] === "Sun"); // false
console.log(Days[3] === "Wed"); // true

所以使用的时候需要注意,最好不要出现这种覆盖的情况。

手动赋值的枚举项可以不是数字,此时需要使用类型断言来让 tsc 无视类型检查 (编译出的 js 仍然是可用的):

enum Days {Sun = 7, Mon, Tue, Wed, Thu, Fri, Sat = <any>"S"};
类型的断言  值 as 类型 |  或者<类型>值

当然,手动赋值的枚举项也可以为小数或负数,此时后续未手动赋值的项的递增步长仍为 1

常数项和计算所得项

枚举项有两种类型:常数项(constant member)和计算所得项(computed member)。

前面我们所举的例子都是常数项,一个典型的计算所得项的例子:

enum Color {Red, Green, Blue = 'blue'.length}

上面的例子中,"blue".length 就是一个计算所得项。

上面的例子不会报错,但是如果紧接在计算所得项后面的是未手动赋值的项,那么它就会因为无法获得初始值而报错

enum Color {Red = "red".length, Green, Blue};

// error TS1061: Enum member must have initializer.
// error TS1061: Enum member must have initializer.

下面是常数项和计算所得项的完整定义,部分引用自中文手册 - 枚举

当满足以下条件时,枚举成员被当作是常数:

  • 不具有初始化函数并且之前的枚举成员是常数。在这种情况下,当前枚举成员的值为上一个枚举成员的值加 1。但第一个枚举元素是个例外。如果它没有初始化方法,那么它的初始值为 0
  • 枚举成员使用常数枚举表达式初始化。常数枚举表达式是 TypeScript 表达式的子集,它可以在编译阶段求值。当一个表达式满足下面条件之一时,它就是一个常数枚举表达式:
    • 数字字面量
    • 引用之前定义的常数枚举成员(可以是在不同的枚举类型中定义的)如果这个成员是在同一个枚举类型中定义的,可以使用非限定名来引用
    • 带括号的常数枚举表达式
    • +, -, ~ 一元运算符应用于常数枚举表达式
    • +, -, *, /, %, <<, >>, >>>, &, |, ^ 二元运算符,常数枚举表达式做为其一个操作对象。若常数枚举表达式求值后为 NaN 或 Infinity,则会在编译阶段报错

所有其它情况的枚举成员被当作是需要计算得出的值。

常数枚举

常数枚举是使用 const enum 定义的枚举类型:

const enum Directions {
    Up,
    Down,
    Left,
    Right
}

let directions = [Directions.Up, Directions.Down, Directions.Left, Directions.Right];

常数枚举与普通枚举的区别是,它会在编译阶段被删除,并且不能包含计算成员。

上例的编译结果是:

var directions = [0 /* Up */, 1 /* Down */, 2 /* Left */, 3 /* Right */];

假如包含了计算成员,则会在编译阶段报错:

const enum Color {Red, Green, Blue = "blue".length};

// error TS2474: In 'const' enum declarations member initializer must be constant expression.

外部枚举

外部枚举(Ambient Enums)是使用 declare enum 定义的枚举类型:

declare enum Directions {
    Up,
    Down,
    Left,
    Right
}
let directions = [Directions.Up, Directions.Down, Directions.Left, Directions.Right];

之前提到过,declare 定义的类型只会用于编译时的检查,编译结果中会被删除。

上例的编译结果是:

var directions = [Directions.Up, Directions.Down, Directions.Left, Directions.Right];

外部枚举与声明语句一样,常出现在声明文件中。

同时使用 declareconst 也是可以的:

declare const enum Directions {
    Up,
    Down,
    Left,
    Right
}

let directions = [Directions.Up, Directions.Down, Directions.Left, Directions.Right];

编译结果:

var directions = [0 /* Up */, 1 /* Down */, 2 /* Left */, 3 /* Right */];

交叉类型

交叉类型是将多个类型合并为一个类型

interface A {
	name: string;
	age: number
}
interface B {
	email: string
}
type C = A & B
interface A {
	name: string;
	age: number
}
interface B {
	name: string;
	email: string
}
type C = A & B
const c : C = {
	name: 'XXX',
	age: 18,
	email: 'xxxxxx'
}
type A = string | number
type B = string | boolean
type C = A & B

类型守卫/类型保护

联合类型让一个值可以为不同的类型,但随之带来的问题就是访问非共同方法时会报错。那么该如何区分值的具体类型,以及如何访问共有成员?

typeof

function doSome(x: number | string) {
  if (typeof x === 'string') {
    // 在这个块中,TypeScript 知道 `x` 的类型必须是 `string`
    console.log(x.substr(1)); // ok
  }

  x.substr(1); // Error: 无法保证 `x` 是 `string` 类型
}

instanceof

class Foo {
  foo = 123;
  common = '123';
}

class Bar {
  bar = 123;
  common = '123';
}

function doStuff(arg: Foo | Bar) {
  if (arg instanceof Foo) {
    console.log(arg.foo); // ok
    console.log(arg.bar); // Error
  }
  if (arg instanceof Bar) {
    console.log(arg.foo); // Error
    console.log(arg.bar); // ok
  }
}

doStuff(new Foo());
doStuff(new Bar());

in

in 操作符可以安全的检查一个对象上是否存在一个属性,它通常也被作为类型保护使用:

interface A {
  x: number;
}

interface B {
  y: string;
}

function doStuff(q: A | B) {
  if ('x' in q) {
    // q: A
  } else {
    // q: B
  }
}

字面量类型保护

当你在联合类型里使用字面量类型时,你可以检查它们是否有区别:

type Foo = {
  kind: 'foo'; // 字面量类型
  foo: number;
};

type Bar = {
  kind: 'bar'; // 字面量类型
  bar: number;
};

function doStuff(arg: Foo | Bar) {
  if (arg.kind === 'foo') {
    console.log(arg.foo); // ok
    console.log(arg.bar); // Error
  } else {
    // 一定是 Bar
    console.log(arg.foo); // Error
    console.log(arg.bar); // ok
  }
}

自定义类型保护类型

函数中使用 is 定位类型,这仅仅是一个返回值为类似于someArgumentName is SomeType 的函数

// 仅仅是一个 interface
interface Foo {
  foo: number;
  common: string;
}

interface Bar {
  bar: number;
  common: string;
}

// 用户自己定义的类型保护!
function isFoo(arg: Foo | Bar): arg is Foo {
  return (arg as Foo).foo !== undefined;
}

// 用户自己定义的类型保护使用用例:
function doStuff(arg: Foo | Bar) {
  if (isFoo(arg)) {
    console.log(arg.foo); // ok
    console.log(arg.bar); // Error
  } else {
    console.log(arg.foo); // Error
    console.log(arg.bar); // ok
  }
}

doStuff({ foo: 123, common: '123' });
doStuff({ bar: 123, common: '123' });

传统方法中,JavaScript 通过构造函数实现类的概念,通过原型链实现继承。而在 ES6 中,我们终于迎来了 class

TypeScript 除了实现了所有 ES6 中的类的功能以外,还添加了一些新的用法。

这一节主要介绍类的用法,下一节再介绍如何定义类的类型。

类的概念

虽然 JavaScript 中有类的概念,但是可能大多数 JavaScript 程序员并不是非常熟悉类,这里对类相关的概念做一个简单的介绍。

  • 类(Class):定义了一件事物的抽象特点,包含它的属性和方法
  • 对象(Object):类的实例,通过 new 生成
  • 面向对象(OOP)的三大特性:封装、继承、多态
  • 封装(Encapsulation):将对数据的操作细节隐藏起来,只暴露对外的接口。外界调用端不需要(也不可能)知道细节,就能通过对外提供的接口来访问该对象,同时也保证了外界无法任意更改对象内部的数据
  • 继承(Inheritance):子类继承父类,子类除了拥有父类的所有特性外,还有一些更具体的特性
  • 多态(Polymorphism):由继承而产生了相关的不同的类,对同一个方法可以有不同的响应。比如 CatDog 都继承自 Animal,但是分别实现了自己的 eat 方法。此时针对某一个实例,我们无需了解它是 Cat 还是 Dog,就可以直接调用 eat 方法,程序会自动判断出来应该如何执行 eat
  • 存取器(getter & setter):用以改变属性的读取和赋值行为
  • 修饰符(Modifiers):修饰符是一些关键字,用于限定成员或类型的性质。比如 public表示公有属性或方法
  • 抽象类(Abstract Class):抽象类是供其他类继承的基类,抽象类不允许被实例化。抽象类中的抽象方法必须在子类中被实现
  • 接口(Interfaces):不同类之间公有的属性或方法,可以抽象成一个接口。接口可以被类实现(implements)。一个类只能继承自另一个类,但是可以实现多个接口

ES6中类的用法

属性和方法

使用class定义类,使用constructor定义构造函数

通过new生成新实例的时候,会自动调用构造函数

class Animal {
	public name;
	constructor(name) {
		this.name = name
	}
	sayHi() {
		return `My name is ${this.name}`;
	}
}
let a = new Animal('Jack')
console.log(a.sayHi()); // My name is Jack
类的继承

使用extends关键字实现继承,子类中使用super关键字来调用父类的构造函数和方法

class Cat extends Animal {
  constructor(name) {
    super(name); // 调用父类的 constructor(name)
    console.log(this.name);
  }
  sayHi() {
    return 'Meow, ' + super.sayHi(); // 调用父类的 sayHi()
  }
}

let c = new Cat('Tom'); // Tom
console.log(c.sayHi()); // Meow, My name is Tom
存取器

使用getter和setter可以改变属性的赋值和读取行为;

class Animal {
  constructor(name) {
    this.name = name;
  }
  get name() {
    return 'Jack';
  }
  set name(value) {
    console.log('setter: ' + value);
  }
}

let a = new Animal('Kitty'); // setter: Kitty
a.name = 'Tom'; // setter: Tom
console.log(a.name); // Jack
静态方法

使用static修饰符修饰的方法称为静态方法,他们不需要实例化,而是直接通过类来调用:

class Animal {
  static isAnimal(a) {
    return a instanceof Animal;
  }
}

let a = new Animal('Jack');
Animal.isAnimal(a); // true
a.isAnimal(a); // TypeError: a.isAnimal is not a function

TypeScript中类的用法

public private和protected

TypeScript 可以使用三种访问修饰符(Access Modifiers),分别是 publicprivateprotected

  • public 修饰的属性或方法是公有的,可以在任何地方被访问到,默认所有的属性和方法都是 public
  • private 修饰的属性或方法是私有的,不能在声明它的类的外部访问
  • protected 修饰的属性或方法是受保护的,它和 private 类似,区别是它在子类中也是允许被访问的
class Animal {
	public name;
	public constructor (name) {
		this.name = name
	}
}
let a = new Animal('Jack')
console.log(a.name) // Jack
a.name = 'Tom'
console.log(a.name) // Tom

面的例子中,name 被设置为了 public,所以直接访问实例的 name 属性是允许的。

很多时候,我们希望有的属性是无法直接存取的,这时候就可以用 private 了:

class Animal {
	private name;
	public constructor (name) {
		this.name = name
	}
}
let a = new Animal('Jack')
console.log(a.name) // Jack
a.name = 'Tom' // a是私有的,不允许在外面赋值
// error TS2341: Property 'name' is private and only accessible within class 'Animal'.

使用 private 修饰的属性或方法,在子类中也是不允许访问的:

class Animal {
  private name;
  public constructor(name) {
    this.name = name;
  }
}

class Cat extends Animal {
  constructor(name) {
    super(name);
    console.log(this.name);
  }
}

// index.ts(11,17): error TS2341: Property 'name' is private and only accessible within class 'Animal'.

而如果是用 protected 修饰,则允许在子类中访问:

class Animal {
  protected name;
  public constructor(name) {
    this.name = name;
  }
}

class Cat extends Animal {
  constructor(name) {
    super(name);
    console.log(this.name);
  }
}

当构造函数修饰为 private 时,该类不允许被继承或者实例化:

class Animal {
  public name;
  private constructor(name) {
    this.name = name;
  }
}
class Cat extends Animal {
  constructor(name) {
    super(name);
  }
}

let a = new Animal('Jack');

// index.ts(7,19): TS2675: Cannot extend a class 'Animal'. Class constructor is marked as private.
// index.ts(13,9): TS2673: Constructor of class 'Animal' is private and only accessible within the class declaration.

当构造函数修饰为 protected 时,该类只允许被继承:

class Animal {
  public name;
  protected constructor(name) {
    this.name = name;
  }
}
class Cat extends Animal {
  constructor(name) {
    super(name);
  }
}

let a = new Animal('Jack');

// index.ts(13,9): TS2674: Constructor of class 'Animal' is protected and only accessible within the class declaration.
参数属性

修饰符和readonly还可以使用在构造函数参数中,等同于类中定义该属性同时给该属性赋值,使代码更简洁。

class Animal {
  // public name: string;
  public constructor(public name) {
    // this.name = name;
  }
}
readonly

只读属性关键字,只允许出现在属性声明或者索引签名或构造函数中。

class Animal {
  readonly name;
  public constructor(name) {
    this.name = name;
  }
}

let a = new Animal('Jack');
console.log(a.name); // Jack
a.name = 'Tom';

// index.ts(10,3): TS2540: Cannot assign to 'name' because it is a read-only property.

注意如果 readonly 和其他访问修饰符同时存在的话,需要写在其后面。

class Animal {
  // public readonly name;
  public constructor(public readonly name) {
    // this.name = name;
  }
}
抽象类

abstract 用于定义抽象类和其中的抽象方法。

什么是抽象类?

首先,抽象类是不允许被实例化的:

abstract class Animal {
  public name;
  public constructor(name) {
    this.name = name;
  }
  public abstract sayHi();
}

let a = new Animal('Jack');

// index.ts(9,11): error TS2511: Cannot create an instance of the abstract class 'Animal'.

上面的例子中,我们定义了一个抽象类 Animal,并且定义了一个抽象方法 sayHi。在实例化抽象类的时候报错了。

其次,抽象类中的抽象方法必须被子类实现:

abstract class Animal {
  public name;
  public constructor(name) {
    this.name = name;
  }
  public abstract sayHi();
}

class Cat extends Animal {
  public eat() {
    console.log(`${this.name} is eating.`);
  }
}

let cat = new Cat('Tom');

// index.ts(9,7): error TS2515: Non-abstract class 'Cat' does not implement inherited abstract member 'sayHi' from class 'Animal'.

上面的例子中,我们定义了一个类 Cat 继承了抽象类 Animal,但是没有实现抽象方法 sayHi,所以编译报错了。

下面是一个正确使用抽象类的例子:

abstract class Animal {
  public name;
  public constructor(name) {
    this.name = name;
  }
  public abstract sayHi();
}

class Cat extends Animal {
  public sayHi() {
    console.log(`Meow, My name is ${this.name}`);
  }
}

let cat = new Cat('Tom');

上面的例子中,我们实现了抽象方法 sayHi,编译通过了。

需要注意的是,即使是抽象方法,TypeScript 的编译结果中,仍然会存在这个类,上面的代码的编译结果是:

var __extends =
  (this && this.__extends) ||
  function (d, b) {
    for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
    function __() {
      this.constructor = d;
    }
    d.prototype = b === null ? Object.create(b) : ((__.prototype = b.prototype), new __());
  };
var Animal = (function () {
  function Animal(name) {
    this.name = name;
  }
  return Animal;
})();
var Cat = (function (_super) {
  __extends(Cat, _super);
  function Cat() {
    _super.apply(this, arguments);
  }
  Cat.prototype.sayHi = function () {
    console.log('Meow, My name is ' + this.name);
  };
  return Cat;
})(Animal);
var cat = new Cat('Tom');
类的类型

给类加上 TypeScript 的类型很简单,与接口类似

class Animal {
  name: string;
  constructor(name: string) {
    this.name = name;
  }
  sayHi(): string {
    return `My name is ${this.name}`;
  }
}

let a: Animal = new Animal('Jack');
console.log(a.sayHi()); // My name is Jack

类与接口

类实现接口

实现(implements)是面向对象中的一个重要概念。一般来讲,一个类只能继承自另一个类,有时候不同类之间可以有一些共有的特性,这时候就可以把特性提取成接口(interfaces),用 implements 关键字来实现。这个特性大大提高了面向对象的灵活性。

举例来说,门是一个类,防盗门是门的子类。如果防盗门有一个报警器的功能,我们可以简单的给防盗门添加一个报警方法。这时候如果有另一个类,车,也有报警器的功能,就可以考虑把报警器提取出来,作为一个接口,防盗门和车都去实现它:

interface Alarm {
	alert(): void
}
class SecurityDoor extends Door implements Alarm {
    alert() {
        console.log('SecurityDoor alert');
    }
}

class Car implements Alarm {
    alert() {
        console.log('Car alert');
    }
}

一个类可以实现多个接口:

interface Alarm {
    alert(): void;
}

interface Light {
    lightOn(): void;
    lightOff(): void;
}

class Car implements Alarm, Light {
    alert() {
        console.log('Car alert');
    }
    lightOn() {
        console.log('Car light on');
    }
    lightOff() {
        console.log('Car light off');
    }
}

上例中,Car 实现了 AlarmLight 接口,既能报警,也能开关车灯。

接口继承接口

接口与接口直接可以是继承关系:

interface Alarm {
	alert(): void
}
interface LightableAlarm extends Alarm {
    lightOn(): void;
    lightOff(): void;
}

这很好理解,LightableAlarm 继承了 Alarm,除了拥有 alert 方法之外,还拥有两个新方法 lightOnlightOff

接口继承类

常见的面向对象语言中,接口时不能继承类的,但是在TypeScript中却是可以的。

class Point {
    x: number;
    y: number;
    constructor(x: number, y: number) {
        this.x = x;
        this.y = y;
    }
}

interface Point3d extends Point {
    z: number;
}

let point3d: Point3d = {x: 1, y: 2, z: 3};

为什么 TypeScript 会支持接口继承类呢?

实际上,当我们在声明 class Point 时,除了会创建一个名为 Point 的类之外,同时也创建了一个名为 Point 的类型(实例的类型)。

所以我们既可以将 Point 当做一个类来用(使用 new Point 创建它的实例):

class Point {
    x: number;
    y: number;
    constructor(x: number, y: number) {
        this.x = x;
        this.y = y;
    }
}

const p = new Point(1, 2);

也可以将 Point 当做一个类型来用(使用 : Point 表示参数的类型):

class Point {
    x: number;
    y: number;
    constructor(x: number, y: number) {
        this.x = x;
        this.y = y;
    }
}

function printPoint(p: Point) {
    console.log(p.x, p.y);
}

printPoint(new Point(1, 2));

这个例子实际上可以等价于:

class Point {
    x: number;
    y: number;
    constructor(x: number, y: number) {
        this.x = x;
        this.y = y;
    }
}

interface PointInstanceType {
    x: number;
    y: number;
}

function printPoint(p: PointInstanceType) {
    console.log(p.x, p.y);
}

printPoint(new Point(1, 2));

上例中我们新声明的 PointInstanceType 类型,与声明 class Point 时创建的 Point 类型是等价的。

所以回到 Point3d 的例子中,我们就能很容易的理解为什么 TypeScript 会支持接口继承类了:

class Point {
    x: number;
    y: number;
    constructor(x: number, y: number) {
        this.x = x;
        this.y = y;
    }
}

interface PointInstanceType {
    x: number;
    y: number;
}

// 等价于 interface Point3d extends PointInstanceType
interface Point3d extends Point {
    z: number;
}

let point3d: Point3d = {x: 1, y: 2, z: 3};

当我们声明 interface Point3d extends Point 时,Point3d 继承的实际上是类 Point 的实例的类型。

换句话说,可以理解为定义了一个接口 Point3d 继承另一个接口 PointInstanceType

所以「接口继承类」和「接口继承接口」没有什么本质的区别。

值得注意的是,PointInstanceType 相比于 Point,缺少了 constructor 方法,这是因为声明 Point 类时创建的 Point 类型是不包含构造函数的。另外,除了构造函数是不包含的,静态属性或静态方法也是不包含的(实例的类型当然不应该包括构造函数、静态属性或静态方法)。

换句话说,声明 Point 类时创建的 Point 类型只包含其中的实例属性和实例方法:

class Point {
    /** 静态属性,坐标系原点 */
    static origin = new Point(0, 0);
    /** 静态方法,计算与原点距离 */
    static distanceToOrigin(p: Point) {
        return Math.sqrt(p.x * p.x + p.y * p.y);
    }
    /** 实例属性,x 轴的值 */
    x: number;
    /** 实例属性,y 轴的值 */
    y: number;
    /** 构造函数 */
    constructor(x: number, y: number) {
        this.x = x;
        this.y = y;
    }
    /** 实例方法,打印此点 */
    printPoint() {
        console.log(this.x, this.y);
    }
}

interface PointInstanceType {
    x: number;
    y: number;
    printPoint(): void;
}

let p1: Point;
let p2: PointInstanceType;

上例中最后的类型 Point 和类型 PointInstanceType 是等价的。

同样的,在接口继承类的时候,也只会继承它的实例属性和实例方法。

泛型

泛型(Generics)是指在定义函数、接口或类的时候,不预先指定具体的类型,而在使用的时候再指定类型的一种特性。

在函数中使用泛型

先来看一段代码:

function join(a: number | string, b: number | string) {
  return `${a} ${b}`;
}

这是一段很水的代码,作为萌新也一下就能看出来,a和b能传数字也能传字符串,最后的返回值,就是利用字符串模板将两者拼起来,其中我们传值有这么4种可能

  • a数字 b数字
  • a字符串b字符串
  • a数字b字符串
  • a字符串b数字

但最终的结果依然是拼接,这个时候来了这么个需求,我们必须2个变量的类型要统一,我擦类,这怎么搞,这个时候掏出泛型,改写下代码并这么使用就可以了

function join<T> (a: T, b: T) {
  return `${a} ${b}`;
}

join<number>(1, 2);
join<string>('1', '2');
// join<number>(1, '2'); //这行报错,你都规定是number了,字符串2是什么鬼
// join<string>(1, '2'); //这行也报错,你都规定是string了,数字1是什么鬼

在方法执行的括号前加上尖括号,指定类型就可以了(可以省略尖括号,ts会类型推断,但不建议这么做),这样也约束了参数的类型,这就是最基本最基础的一个使用方式了

函数中使用泛型 2

我们同样也可以约束数组每一项的类型,比如写一个最简单的函数,传入个数组,并返回这个数组

function getArr<T>(arr: T[]) {
  return arr;
}

getArr<number>([1, 2, 3]) //指定了number,那我的数组必须每一项也是number,如果不是就报错
getArr<string>(['g', 'q', 'f']) //同理这里指定了string

函数中使用泛型3

获取对象对应key的value,那大家都知道使用obj[key]就可以了,但有的对象我们并不知道有没有这个key,用泛型的话可以很好的解决这个问题

function getVal<T>(obj: T, k: keyof T){
  return obj[k];
}

interface Person {
  name: string;
  age: number;
}

getVal<Person>({
  name: 'gqf',
  age: 29
}, 'age') // 这里的key值只能传name或者age,否则就会报错,这个就是泛型的力量

在函数中使用泛型4

function manyTest<K, V>(a: K, b: V) {
  return `${a} ${b}`
}

manyTest<number, string>(1, '2') //泛型指定了第一个参数是数字,第二个参数是字符串,所以对应的参数也要这么传

泛型接口

模拟请求相应的场景,初始代码

interface IResponseData{
    code: number;
    message?: string;
    data: any;
}
async function getData(url: string){
  let response = await fetch(url);
  let data = await response.json();
  return data;
} 

上述代码很明显有个问题,我们会发现该接口的data项的具体格式不确定,不同的接口会返回的数据是不一样的,当我们想根据具体当前请求的接口返回具体data格式的时候,就比较麻烦了,因为getData并不清楚你调用的具体接口是什么,对应的数据又会是什么,这个时候我们可以对IResponseData使用泛型

interface IResponseData<T>{
    code: number;
    message?: string;
    data: T;
}

// 用户接口
interface IResponseUserData{
    id: number;
    username: string;
    email: string;
}

// 文章接口
interface IResponseArticleData{
    id: number;
    title: string;
    author: IResponseUserData; 
} 

async function getData<U>(url: string){
    let response = await fetch(url);
    let data: Promise<IResponseData<U>> = await response.json(); // 注意这里返回的是个Promise,然后我们根据不同的接口,指定不同的data数据格式
    return data;
} 

(async function(){
    let userData = await getData<IResponseUserData>('/user');
    userData.data.username;

    let articleData = await getData<IResponseArticleData>('/article');
    articleData.data.author.email;
})()

在类中使用泛型

class AddClass<T> {
    parmas: T;
    add: (x: T, y: T) => T;
}

let addNumber = new AddClass<number>();
addNumber.parmas = 0;
addNumber.add = function(x, y) { return x + y; };

多参数类型

function returnParamsArr<T, U>(a: T, b:U):[U, T] {
    return  [b, a];
}

class AddClass<T, U> {
    parmas: U;
    add: (x: T, y: U) => [U, T];
}

interface Add<T, U> {
	parmas: U;
	add: (x: T, y: U) => [U, T];
}

流动的类型

捕获变量的类型

你可以通过 typeof 操作符在类型注解中使用变量。这允许你告诉编译器,一个变量的类型与其他类型相同,如下所示:

let foo = 123;
let bar: typeof foo; // 'bar' 类型与 'foo' 类型相同(在这里是: 'number')

bar = 456; // ok
bar = '789'; // Error: 'string' 不能分配给 'number' 类型

捕获类成员的类型

与捕获变量的类型相似,你仅仅是需要声明一个变量用来捕获到的类型:

class Foo {
  foo: number; // 我们想要捕获的类型
}

declare let _foo: Foo;

// 与之前做法相同
let bar: typeof _foo.foo;

捕获键的名称

keyof 操作符能让你捕获一个类型的键。例如,你可以使用它来捕获变量的键名称,在通过使用 typeof 来获取类型之后:

keyofObject.keys 略有相似,只不过 keyofinterface 的键。

const colors = {
  red: 'red',
  blue: 'blue'
};

type Colors = keyof typeof colors;

let color: Colors; // color 的类型是 'red' | 'blue'
color = 'red'; // ok
color = 'blue'; // ok
color = 'anythingElse'; // Error

声明合并

如果定义了两个相同名字的函数、接口或类,那么它们会合并成一个类型:

函数的合并

之前学习过,我们可以使用重载定义多个函数类型:

function reverse(x: number): number;
function reverse(x: string): string;
function reverse(x: number | string): number | string {
    if (typeof x === 'number') {
        return Number(x.toString().split('').reverse().join(''));
    } else if (typeof x === 'string') {
        return x.split('').reverse().join('');
    }
}
接口的合并

接口中的属性在合并时会简单的合并到一个接口中:

interface Alarrm {
	price: number
}
interface Alarm {
	weight: number
}

相当于:

interface Alarm {
    price: number;
    weight: number;
}

注意,合并的属性的类型必须是唯一的

interface Alarm {
    price: number;
}
interface Alarm {
    price: number;  // 虽然重复了,但是类型都是 `number`,所以不会报错
    weight: number;
}
interface Alarm {
    price: number;
}
interface Alarm {
    price: string;  // 类型不一致,会报错
    weight: number;
}

// index.ts(5,3): error TS2403: Subsequent variable declarations must have the same type.  Variable 'price' must be of type 'number', but here has type 'string'.

接口中方法的合并,与函数的合并一样:

interface Alarm {
    price: number;
    alert(s: string): string;
}
interface Alarm {
    weight: number;
    alert(s: string, n: number): string;
}

相当于:

interface Alarm {
    price: number;
    weight: number;
    alert(s: string): string;
    alert(s: string, n: number): string;
}
类的合并

类的合并与接口的合并规则一致。

« 漫谈前端项目框架搭建 TypeScript --- 基础篇 »